Fishes normally excrete ammonia as their main excretory product. However, due to certain stress factors they may excrete urea. In the present study, the possible role of ureogenesis to avoid accumulation of toxic ammonia under water-restricted condition was tested in the major carp, *Labeo rohita*. A total of hundred fishes were collected and sacrificed. Excretory urea and ammonia were estimated in the water of the aquarium and glutamate dehydrogenase activity was measured in the hepatic tissue. During the experimental period, significantly high (p<0.01) excretory ammonia in *Labeo rohita* was found which was between 145% to 234% above the baseline ammonia and excretory urea was found between 142% to 638% above the baseline urea. A high degree of correlation with r (coefficient of correlation) above 0.9 is observed between excretory ammonia and urea in *Labeo rohita*. However, only a moderate degree of correlation is observed between the activity of glutamate dehydrogenase and excretory ammonia and urea.

Keywords: Ureogenesis, ammonia, urea, glutamate
higher than ammonia in the mud-dwelled fish, indicating the activation of ureogenesis in a water-restricted condition [10].

In the Atlantic cod (Gadus morhua L.) the excretion of nitrogen and expression of urea cycle enzymes was reported [11].

Glutamate dehydrogenase (GLDH) is an important enzyme, linking nitrogen elimination with utilization of amino acid carbons for energy metabolism. The endogenous ammonia production in different fishes has a significant role in glutamate catabolism. [12-14].

NAD-linked glutamate dehydrogenase catalyzes the major, but not sole, pathway for generation of ammonia from glutamate [15].

In liver, excessive glutamate dehydrogenase activity results in increased ammonia production and depressed synthesis of N-acetylglutamate, a required allosteric activator of the first step in ureogenesis [16]. In view of the controversies regarding the interrelationship between glutamate dehydrogenase and excretory pattern, the present study was aimed to investigate the excretory pattern of ammonia and urea with special reference to activity of glutamate dehydrogenase in hepatic tissue of freshwater fish, Labeo rohita.

MATERIALS AND METHODS

Specimen

Labeo rohita were collected from a local pond and were kept in the aquarium for acclimatization over a period of ten days.

Method

Total hundred fishes were collected. Those hundred fishes were divided in ten sets, each set comprising ten fishes to be sacrificed in ten consecutive days. Out of eleven aquariums used, one aquarium was kept only with water. It acted as “control water”. In the other ten aquariums, fishes were kept as experimental specimen.

Every day, one fish from one aquarium was sacrificed for the experiment. The experiment was continued till tenth day. Urea, ammonia and glutamate dehydrogenase activity were estimated in case of total ten fishes in ten consecutive days for both normal and experimental fishes. Enzyme activity was measured in the liver tissue of the freshly killed fishes of normal and experimental group.

Processing of the Collected Sample

The water of the aquarium containing the fishes was collected for excretory ammonia and urea measurement.

The liver tissue from the normal and experimental fishes was weighed and homogenized using distilled water. The homogenized tissue was centrifuged and the supernatant was used for enzyme assay.

Estimation of ammonia and urea

Ammonia was estimated by following the method of Anken and Schiphorst (1974). Urea was estimated by following Crest Biosystems Modified Berthelot method by Fawcett and Scott (1960).

Estimation of glutamate dehydrogenase

Glutamate dehydrogenase activity was determined by following the method of Doherty (1970).

DISCUSSION

The general mode of nitrogen excretion in fish is in the form of ammonia. However, under some circumstances as stress or enhanced ammonia level in the surrounding, fishes are reported to change their nitrogen excretion mechanism by forming urea as the end product for nitrogen excretion (Saha *et al.*, 2003).

In the present study, changes in the activity of glutamate dehydrogenase in *Labeo rohita* in relation to ammonotelic and ureotelic nitrogen excretion is tried to probe with monitoring the excretory nitrogen forms as urea and ammonia in the rearing media.

A significantly increasing trend (p<0.01) was observed in both ammonia and urea excretion from first to tenth day of experimental period. Significantly higher urea excretion, 142.50% to 638% (Table 2) against 145% to 234% ammonia excretion (Table 2) above normal control baseline was the important observation in the present study. However, hepatic glutamate dehydrogenase activity exhibited a fluctuating trend throughout the experimental period (Table 2). On the simultaneous interpretation of the trends of glutamate dehydrogenase activity with trends of changing excretory ammonia and urea under the same experimental set-up it is observed that there is no any definite and appreciable relationship between the trends of these fluctuation (Fig. 1).

Frequent fluctuation in glutamate dehydrogenase activity and absence of relationship with excretory ammonia and urea may be explained with the fact that the changing glutamate dehydrogenase activity is a resultant of overall production of ammonia and its conversion to urea under a changeover condition alternating between ammonotelism and ureotelism in the present study. However, it is also
observed with interest that whatever may be the state of glutamate dehydrogenase activity; the metabolically generated ammonia is efficiently disposed as either excretory ammonia or is converted to urea for excretion as supported by the observed relationship among the excretory ammonia and urea in the present study (Fig. 2).

A very high degree of correlation with r above 0.9 is observed between excretory ammonia and urea in $Labeo$ $rohita$ (Fig. 3).

Table 1: Presenting the significance of difference in the mean values of excretory ammonia and excretory urea (mg/dl) between normal control and different experimental $Labeo$ $rohita$.

<table>
<thead>
<tr>
<th>Day</th>
<th>Excretory ammonia</th>
<th>Between normal control and experimental $L. rohita$</th>
<th>t</th>
<th>P</th>
<th>df</th>
<th>Excretory urea</th>
<th>Between Normal control and experimental $L. rohita$</th>
<th>P</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td></td>
<td></td>
<td>2.32</td>
<td><0.05</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>2nd</td>
<td></td>
<td></td>
<td>2.94</td>
<td><0.01</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>3rd</td>
<td></td>
<td></td>
<td>2.16</td>
<td><0.05</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>4th</td>
<td></td>
<td></td>
<td>1.98</td>
<td><0.01</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>5th</td>
<td></td>
<td></td>
<td>3.01</td>
<td><0.01</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>6th</td>
<td></td>
<td></td>
<td>4.78</td>
<td><0.01</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>7th</td>
<td></td>
<td></td>
<td>4.90</td>
<td><0.01</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>8th</td>
<td></td>
<td></td>
<td>5.74</td>
<td><0.01</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>9th</td>
<td></td>
<td></td>
<td>6.21</td>
<td><0.01</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
<tr>
<td>10th</td>
<td></td>
<td></td>
<td>7.02</td>
<td><0.01</td>
<td>18</td>
<td></td>
<td></td>
<td><0.01</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2: This table shows presenting the % deviation of excretory ammonia, excretory urea and hepatic glutamate dehydrogenase from the mean values of normal control (mg/dl) in $Labeo$ $rohita$.

<table>
<thead>
<tr>
<th>Day</th>
<th>% deviation of ammonia from normal control</th>
<th>% deviation of urea from normal control</th>
<th>% deviation of glutamate dehydrogenase from normal control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>145.83</td>
<td>142.50</td>
<td>42.50</td>
</tr>
<tr>
<td>2nd</td>
<td>173.58</td>
<td>180.49</td>
<td>17.50</td>
</tr>
<tr>
<td>3rd</td>
<td>225.71</td>
<td>179.56</td>
<td>37.80</td>
</tr>
<tr>
<td>4th</td>
<td>230.26</td>
<td>282.35</td>
<td>11.25</td>
</tr>
<tr>
<td>5th</td>
<td>225.93</td>
<td>351.85</td>
<td>8.97</td>
</tr>
<tr>
<td>6th</td>
<td>451.39</td>
<td>425.30</td>
<td>2.50</td>
</tr>
<tr>
<td>7th</td>
<td>267.57</td>
<td>534.61</td>
<td>15.47</td>
</tr>
<tr>
<td>8th</td>
<td>198.00</td>
<td>571.60</td>
<td>20.00</td>
</tr>
<tr>
<td>9th</td>
<td>231.25</td>
<td>502.35</td>
<td>5.41</td>
</tr>
<tr>
<td>10th</td>
<td>234.39</td>
<td>638.09</td>
<td>20.98</td>
</tr>
</tbody>
</table>

Figure 1: This figure shows presenting the correlation between the mean values of excretory ammonia (mg/dl) and hepatic glutamate dehydrogenase (U/mg) in $Labeo$ $rohita$.

Figure 2: This figure shows presenting the correlation between the mean values of excretory urea (mg/dl) and hepatic glutamate dehydrogenase (U/mg) in $Labeo$ $rohita$.
From the experimental outcome with determination of nitrogen excretion of ammonia and urea and their relationship with hepatic glutamate dehydrogenase (GLDH), it has been observed that excretory ammonia and urea are interrelated with each other (r=0.9788) but the relationship with glutamate dehydrogenase is not pronounced in Labeo rohita. The findings of the present study may suggest some amount of ureotelism in confined condition in this freshwater fish, Labeo rohita though ammonotelic excretion pattern cannot be ruled out.

REFERENCES

[16] Fang J, Hsu BYL, Macmullen CM, Poncza M, Smitha TJ, Stanley CA. Expression, purification, and

CONFLICT OF INTEREST

No conflict of interests was declared by authors

ACKNOWLEDGEMENT / SOURCE(S) OF SUPPORT

Nil

How to Submit Manuscripts

Since we use very fast review system, and since we are dedicated to publishing submitted articles with few weeks of submission, then the easiest and most reliable way of submitting a manuscript for publication in any of the journals from the publisher Research, Reviews and Publications (also known as Research | Reviews | Publications) is by sending an electronic copy of the well formatted manuscript as an email attachment to rrpjournals@gmail.com or online at http://www.rrpjournals.com/.

Submissions are often acknowledged within 6 to 24 hours of submission and the review process normally starts within few hours later, except in the rear cases where we are unable to find the appropriate reviewer on time.

Manuscripts are hardly rejected without first sending them for review, except in the cases where the manuscripts are poorly formatted and the author(s) have not followed the instructions for manuscript preparation which is available on the page of Instruction for Authors in website and can be accessed through http://www.rrpjournals.com/InstructionsForAuthors.html.

Research | Reviews | Publications and its journals have so many unique features such as rapid and quality publication of excellent articles, bilingual publication, some of which are available at http://www.rrpjournals.com/uniqueness.html.